Machine learning (ML) models do not operate in isolation. To deliver value, they must integrate into existing production systems and infrastructure, which necessitates considering the entire ML lifecycle during design and development. ML operations, known as MLOps, focus on streamlining, automating, and monitoring ML models throughout their lifecycle. Building a robust MLOps pipeline demands cross-functional […]
Originally appeared here:
Build an end-to-end MLOps pipeline using Amazon SageMaker Pipelines, GitHub, and GitHub Actions