Author: CAT

  • What of Bitcoin’s fortunes after GBTC outflows drop for 1st time?

    Aniket Verma

    Daily outflows dropped from $640 million to $255 million.
    Bitcoin recovered significantly over the weekend.

    Bitcoin’s [BTC] disappointing run since the approval of spot ETFs has spoiled the

    The post What of Bitcoin’s fortunes after GBTC outflows drop for 1st time? appeared first on AMBCrypto.

    Go here to Read this Fast!

    What of Bitcoin’s fortunes after GBTC outflows drop for 1st time?

    Originally appeared here:

    What of Bitcoin’s fortunes after GBTC outflows drop for 1st time?

  • HugeWin Casino is Redefining Crypto Gambling with a Rich Gaming Ecosystem

    Chainwire  

    Curacao, Curacao, January 29th, 2024, Chainwire HugeWin Casino, a newly established platform as of January 2024, has quickly garnered attention in the cryptocurrency gambling landscape. Its user-centric approach, coupled with an extensive array of gaming options, underscores its emerging status within the industry. Extensive Gaming Portfolio The platform boasts an impressive selection of over 7,000 […]

    The post HugeWin Casino is Redefining Crypto Gambling with a Rich Gaming Ecosystem appeared first on CoinJournal.

    Go here to Read this Fast! HugeWin Casino is Redefining Crypto Gambling with a Rich Gaming Ecosystem

    Originally appeared here:
    HugeWin Casino is Redefining Crypto Gambling with a Rich Gaming Ecosystem

  • Stellar Development Fund postpones Soroban upgrade, gains commendation from Stellar community

    Rony Roy

    The Stellar Development Foundation (SDF) has delayed the much-anticipated Protocol 20 upgrade of the Stellar blockchain, which is slated for Jan. 30.  This decision follows the discovery of a bug in Stellar Core v20.1.0. In a move emphasizing the Foundation’s…

    Go here to Read this Fast! Stellar Development Fund postpones Soroban upgrade, gains commendation from Stellar community

    Originally appeared here:
    Stellar Development Fund postpones Soroban upgrade, gains commendation from Stellar community

  • Birdeye refutes airdrop plans in latest announcement

    Denis Omelchenko

    Crypto trading aggregator Birdeye has unveiled a new feature to customize the data pool, while also addressing speculations surrounding a potential airdrop. In an X post on Jan. 27, Birdeye unveiled a tool called “Terminal,” designed to empower users to…

    Go here to Read this Fast! Birdeye refutes airdrop plans in latest announcement

    Originally appeared here:
    Birdeye refutes airdrop plans in latest announcement

  • ‘Chinese Ethereum’ Conflux jumps 13% following strategic deal with venture firm

    Denis Omelchenko

    Conflux Network’s CFX token gained over 13% amid a ‘strategic partnership’ agreement with Asia-based venture studio BlockBooster. In an X thread, Conflux Network said the latest deal with the Asia-based venture studio will focus on identifying “web3 incubation opportunities within…

    Go here to Read this Fast! ‘Chinese Ethereum’ Conflux jumps 13% following strategic deal with venture firm

    Originally appeared here:
    ‘Chinese Ethereum’ Conflux jumps 13% following strategic deal with venture firm

  • Harvest leads the charge with Hong Kong spot Bitcoin ETF application: Report

    Oluwapelumi Adejumo

    Hong Kong has reportedly received its first application for a spot Bitcoin (BTC) exchange-traded fund (ETF) in the city-state. According to a Jan. 29 Tencent report, Harvest Hong Kong, one of China’s leading fund managers, submitted the first application to the Securities and Futures Commission (SFC) on Jan. 26. This development is arriving just over […]

    The post Harvest leads the charge with Hong Kong spot Bitcoin ETF application: Report appeared first on CryptoSlate.

    Go here to Read this Fast! Harvest leads the charge with Hong Kong spot Bitcoin ETF application: Report

    Originally appeared here:
    Harvest leads the charge with Hong Kong spot Bitcoin ETF application: Report

  • Exphormer: Scaling transformers for graph-structured data

    Google AI

    Graphs, in which objects and their relations are represented as nodes (or vertices) and edges (or links) between pairs of nodes, are ubiquitous in computing and machine learning (ML). For example, social networks, road networks, and molecular structure and interactions are all domains in which underlying datasets have a natural graph structure. ML can be used to learn the properties of nodes, edges, or entire graphs.

    A common approach to learning on graphs are graph neural networks (GNNs), which operate on graph data by applying an optimizable transformation on node, edge, and global attributes. The most typical class of GNNs operates via a message-passing framework, whereby each layer aggregates the representation of a node with those of its immediate neighbors.

    Recently, graph transformer models have emerged as a popular alternative to message-passing GNNs. These models build on the success of Transformer architectures in natural language processing (NLP), adapting them to graph-structured data. The attention mechanism in graph transformers can be modeled by an interaction graph, in which edges represent pairs of nodes that attend to each other. Unlike message passing architectures, graph transformers have an interaction graph that is separate from the input graph. The typical interaction graph is a complete graph, which signifies a full attention mechanism that models direct interactions between all pairs of nodes. However, this creates quadratic computational and memory bottlenecks that limit the applicability of graph transformers to datasets on small graphs with at most a few thousand nodes. Making graph transformers scalable has been considered one of the most important research directions in the field (see the first open problem here).

    A natural remedy is to use a sparse interaction graph with fewer edges. Many sparse and efficient transformers have been proposed to eliminate the quadratic bottleneck for sequences, however, they do not generally extend to graphs in a principled manner.

    In “Exphormer: Sparse Transformers for Graphs”, presented at ICML 2023, we address the scalability challenge by introducing a sparse attention framework for transformers that is designed specifically for graph data. The Exphormer framework makes use of expander graphs, a powerful tool from spectral graph theory, and is able to achieve strong empirical results on a wide variety of datasets. Our implementation of Exphormer is now available on GitHub.

    Expander graphs

    A key idea at the heart of Exphormer is the use of expander graphs, which are sparse yet well-connected graphs that have some useful properties — 1) the matrix representation of the graphs have similar linear-algebraic properties as a complete graph, and 2) they exhibit rapid mixing of random walks, i.e., a small number of steps in a random walk from any starting node is enough to ensure convergence to a “stable” distribution on the nodes of the graph. Expanders have found applications to diverse areas, such as algorithms, pseudorandomness, complexity theory, and error-correcting codes.

    A common class of expander graphs are d-regular expanders, in which there are d edges from every node (i.e., every node has degree d). The quality of an expander graph is measured by its spectral gap, an algebraic property of its adjacency matrix (a matrix representation of the graph in which rows and columns are indexed by nodes and entries indicate whether pairs of nodes are connected by an edge). Those that maximize the spectral gap are known as Ramanujan graphs — they achieve a gap of d – 2*√(d-1), which is essentially the best possible among d-regular graphs. A number of deterministic and randomized constructions of Ramanujan graphs have been proposed over the years for various values of d. We use a randomized expander construction of Friedman, which produces near-Ramanujan graphs.

    Expander graphs are at the heart of Exphormer. A good expander is sparse yet exhibits rapid mixing of random walks, making its global connectivity suitable for an interaction graph in a graph transformer model.

    Exphormer replaces the dense, fully-connected interaction graph of a standard Transformer with edges of a sparse d-regular expander graph. Intuitively, the spectral approximation and mixing properties of an expander graph allow distant nodes to communicate with each other after one stacks multiple attention layers in a graph transformer architecture, even though the nodes may not attend to each other directly. Furthermore, by ensuring that d is constant (independent of the size of the number of nodes), we obtain a linear number of edges in the resulting interaction graph.

    Exphormer: Constructing a sparse interaction graph

    Exphormer combines expander edges with the input graph and virtual nodes. More specifically, the sparse attention mechanism of Exphormer builds an interaction graph consisting of three types of edges:

    • Edges from the input graph (local attention)
    • Edges from a constant-degree expander graph (expander attention)
    • Edges from every node to a small set of virtual nodes (global attention)
    Exphormer builds an interaction graph by combining three types of edges. The resulting graph has good connectivity properties and retains the inductive bias of the input dataset graph while still remaining sparse.

    Each component serves a specific purpose: the edges from the input graph retain the inductive bias from the input graph structure (which typically gets lost in a fully-connected attention module). Meanwhile, expander edges allow good global connectivity and random walk mixing properties (which spectrally approximate the complete graph with far fewer edges). Finally, virtual nodes serve as global “memory sinks” that can directly communicate with every node. While this results in additional edges from each virtual node equal to the number of nodes in the input graph, the resulting graph is still sparse. The degree of the expander graph and the number of virtual nodes are hyperparameters to tune for improving the quality metrics.

    Furthermore, since we use an expander graph of constant degree and a small constant number of virtual nodes for the global attention, the resulting sparse attention mechanism is linear in the size of the original input graph, i.e., it models a number of direct interactions on the order of the total number of nodes and edges.

    We additionally show that Exphormer is as expressive as the dense transformer and obeys universal approximation properties. In particular, when the sparse attention graph of Exphormer is augmented with self loops (edges connecting a node to itself), it can universally approximate continuous functions [1, 2].

    Relation to sparse Transformers for sequences

    It is interesting to compare Exphormer to sparse attention methods for sequences. Perhaps the architecture most conceptually similar to our approach is BigBird, which builds an interaction graph by combining different components. BigBird also uses virtual nodes, but, unlike Exphormer, it uses window attention and random attention from an Erdős-Rényi random graph model for the remaining components.

    Window attention in BigBird looks at the tokens surrounding a token in a sequence — the local neighborhood attention in Exphormer can be viewed as a generalization of window attention to graphs.

    The Erdős-Rényi graph on n nodes, G(n, p), which connects every pair of nodes independently with probability p, also functions as an expander graph for suitably high p. However, a superlinear number of edges (Ω(n log n)) is needed to ensure that an Erdős-Rényi graph is connected, let alone a good expander. On the other hand, the expanders used in Exphormer have only a linear number of edges.

    Experimental results

    Earlier works have shown the use of full graph Transformer-based models on datasets with graphs of size up to 5,000 nodes. To evaluate the performance of Exphormer, we build upon the celebrated GraphGPS framework [3], which combines both message passing and graph transformers and achieves state-of-the-art performance on a number of datasets. We show that replacing dense attention with Exphormer for the graph attention component in the GraphGPS framework allows one to achieve models with comparable or better performance, often with fewer trainable parameters.

    Furthermore, Exphormer notably allows graph transformer architectures to scale well beyond the usual graph size limits mentioned above. Exphormer can scale up to datasets of 10,000+ node graphs, such as the Coauthor dataset, and even beyond to larger graphs such as the well-known ogbn-arxiv dataset, a citation network, which consists of 170K nodes and 1.1 million edges.

    Results comparing Exphormer to standard GraphGPS on the five Long Range Graph Benchmark datasets. We note that Exphormer achieved state-of-the-art results on four of the five datasets (PascalVOC-SP, COCO-SP, Peptides-Struct, PCQM-Contact) at the time of the paper’s publication.

    Finally, we observe that Exphormer, which creates an overlay graph of small diameter via expanders, exhibits the ability to effectively learn long-range dependencies. The Long Range Graph Benchmark is a suite of five graph learning datasets designed to measure the ability of models to capture long-range interactions. Results show that Exphormer-based models outperform standard GraphGPS models (which were previously state-of-the-art on four out of five datasets at the time of publication).

    Conclusion

    Graph transformers have emerged as an important architecture for ML that adapts the highly successful sequence-based transformers used in NLP to graph-structured data. Scalability has, however, proven to be a major challenge in enabling the use of graph transformers on datasets with large graphs. In this post, we have presented Exphormer, a sparse attention framework that uses expander graphs to improve scalability of graph transformers. Exphormer is shown to have important theoretical properties and exhibit strong empirical performance, particularly on datasets where it is crucial to learn long range dependencies. For more information, we point the reader to a short presentation video from ICML 2023.

    Acknowledgements

    We thank our research collaborators Hamed Shirzad and Danica J. Sutherland from The University of British Columbia as well as Ali Kemal Sinop from Google Research. Special thanks to Tom Small for creating the animation used in this post.

    Originally appeared here:
    Exphormer: Scaling transformers for graph-structured data

    Go Here to Read this Fast! Exphormer: Scaling transformers for graph-structured data

  • Introducing ASPIRE for selective prediction in LLMs

    Introducing ASPIRE for selective prediction in LLMs

    Google AI

    In the fast-evolving landscape of artificial intelligence, large language models (LLMs) have revolutionized the way we interact with machines, pushing the boundaries of natural language understanding and generation to unprecedented heights. Yet, the leap into high-stakes decision-making applications remains a chasm too wide, primarily due to the inherent uncertainty of model predictions. Traditional LLMs generate responses recursively, yet they lack an intrinsic mechanism to assign a confidence score to these responses. Although one can derive a confidence score by summing up the probabilities of individual tokens in the sequence, traditional approaches typically fall short in reliably distinguishing between correct and incorrect answers. But what if LLMs could gauge their own confidence and only make predictions when they’re sure?

    Selective prediction aims to do this by enabling LLMs to output an answer along with a selection score, which indicates the probability that the answer is correct. With selective prediction, one can better understand the reliability of LLMs deployed in a variety of applications. Prior research, such as semantic uncertainty and self-evaluation, has attempted to enable selective prediction in LLMs. A typical approach is to use heuristic prompts like “Is the proposed answer True or False?” to trigger self-evaluation in LLMs. However, this approach may not work well on challenging question answering (QA) tasks.

    The OPT-2.7B model incorrectly answers a question from the TriviaQA dataset: “Which vitamin helps regulate blood clotting?” with “Vitamin C”. Without selective prediction, LLMs may output the wrong answer which, in this case, could lead users to take the wrong vitamin. With selective prediction, LLMs will output an answer along with a selection score. If the selection score is low (0.1), LLMs will further output “I don’t know!” to warn users not to trust it or verify it using other sources.

    In “Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs“, presented at Findings of EMNLP 2023, we introduce ASPIRE — a novel framework meticulously designed to enhance the selective prediction capabilities of LLMs. ASPIRE fine-tunes LLMs on QA tasks via parameter-efficient fine-tuning, and trains them to evaluate whether their generated answers are correct. ASPIRE allows LLMs to output an answer along with a confidence score for that answer. Our experimental results demonstrate that ASPIRE significantly outperforms state-of-the-art selective prediction methods on a variety of QA datasets, such as the CoQA benchmark.

    The mechanics of ASPIRE

    Imagine teaching an LLM to not only answer questions but also evaluate those answers — akin to a student verifying their answers in the back of the textbook. That’s the essence of ASPIRE, which involves three stages: (1) task-specific tuning, (2) answer sampling, and (3) self-evaluation learning.

    Task-specific tuning: ASPIRE performs task-specific tuning to train adaptable parameters (θp) while freezing the LLM. Given a training dataset for a generative task, it fine-tunes the pre-trained LLM to improve its prediction performance. Towards this end, parameter-efficient tuning techniques (e.g., soft prompt tuning and LoRA) might be employed to adapt the pre-trained LLM on the task, given their effectiveness in obtaining strong generalization with small amounts of target task data. Specifically, the LLM parameters (θ) are frozen and adaptable parameters (θp) are added for fine-tuning. Only θp are updated to minimize the standard LLM training loss (e.g., cross-entropy). Such fine-tuning can improve selective prediction performance because it not only improves the prediction accuracy, but also enhances the likelihood of correct output sequences.

    Answer sampling: After task-specific tuning, ASPIRE uses the LLM with the learned θp to generate different answers for each training question and create a dataset for self-evaluation learning. We aim to generate output sequences that have a high likelihood. We use beam search as the decoding algorithm to generate high-likelihood output sequences and the Rouge-L metric to determine if the generated output sequence is correct.

    Self-evaluation learning: After sampling high-likelihood outputs for each query, ASPIRE adds adaptable parameters (θs) and only fine-tunes θs for learning self-evaluation. Since the output sequence generation only depends on θ and θp, freezing θ and the learned θp can avoid changing the prediction behaviors of the LLM when learning self-evaluation. We optimize θs such that the adapted LLM can distinguish between correct and incorrect answers on their own.

    The three stages of the ASPIRE framework.

    In the proposed framework, θp and θs can be trained using any parameter-efficient tuning approach. In this work, we use soft prompt tuning, a simple yet effective mechanism for learning “soft prompts” to condition frozen language models to perform specific downstream tasks more effectively than traditional discrete text prompts. The driving force behind this approach lies in the recognition that if we can develop prompts that effectively stimulate self-evaluation, it should be possible to discover these prompts through soft prompt tuning in conjunction with targeted training objectives.

    Implementation of the ASPIRE framework via soft prompt tuning. We first generate the answer to the question with the first soft prompt and then compute the learned self-evaluation score with the second soft prompt.

    After training θp and θs, we obtain the prediction for the query via beam search decoding. We then define a selection score that combines the likelihood of the generated answer with the learned self-evaluation score (i.e., the likelihood of the prediction being correct for the query) to make selective predictions.

    Results

    To demonstrate ASPIRE’s efficacy, we evaluate it across three question-answering datasets — CoQA, TriviaQA, and SQuAD — using various open pre-trained transformer (OPT) models. By training θp with soft prompt tuning, we observed a substantial hike in the LLMs’ accuracy. For example, the OPT-2.7B model adapted with ASPIRE demonstrated improved performance over the larger, pre-trained OPT-30B model using the CoQA and SQuAD datasets. These results suggest that with suitable adaptations, smaller LLMs might have the capability to match or potentially surpass the accuracy of larger models in some scenarios.

    When delving into the computation of selection scores with fixed model predictions, ASPIRE received a higher AUROC score (the probability that a randomly chosen correct output sequence has a higher selection score than a randomly chosen incorrect output sequence) than baseline methods across all datasets. For example, on the CoQA benchmark, ASPIRE improves the AUROC from 51.3% to 80.3% compared to the baselines.

    An intriguing pattern emerged from the TriviaQA dataset evaluations. While the pre-trained OPT-30B model demonstrated higher baseline accuracy, its performance in selective prediction did not improve significantly when traditional self-evaluation methods — Self-eval and P(True) — were applied. In contrast, the smaller OPT-2.7B model, when enhanced with ASPIRE, outperformed in this aspect. This discrepancy underscores a vital insight: larger LLMs utilizing conventional self-evaluation techniques may not be as effective in selective prediction as smaller, ASPIRE-enhanced models.

    Our experimental journey with ASPIRE underscores a pivotal shift in the landscape of LLMs: The capacity of a language model is not the be-all and end-all of its performance. Instead, the effectiveness of models can be drastically improved through strategic adaptations, allowing for more precise, confident predictions even in smaller models. As a result, ASPIRE stands as a testament to the potential of LLMs that can judiciously ascertain their own certainty and decisively outperform larger counterparts in selective prediction tasks.

    Conclusion

    In conclusion, ASPIRE is not just another framework; it’s a vision of a future where LLMs can be trusted partners in decision-making. By honing the selective prediction performance, we’re inching closer to realizing the full potential of AI in critical applications.

    Our research has opened new doors, and we invite the community to build upon this foundation. We’re excited to see how ASPIRE will inspire the next generation of LLMs and beyond. To learn more about our findings, we encourage you to read our paper and join us in this thrilling journey towards creating a more reliable and self-aware AI.

    Acknowledgments

    We gratefully acknowledge the contributions of Sayna Ebrahimi, Sercan O Arik, Tomas Pfister, and Somesh Jha.

    Originally appeared here:
    Introducing ASPIRE for selective prediction in LLMs

    Go Here to Read this Fast! Introducing ASPIRE for selective prediction in LLMs